2004 TRIAL HIGHER SCHOOL CERTIFICATE

MATHEMATICS Extension 1

General Instructions

Reading Time: 5 minutes
Working Time: 2 hours

- Attempt all questions
 Start each question on a new page
 Each question is of equal value

- Show all necessary working.
 Marks may be deducted for careless work or incomplete solutions
- Standard integrals are printed on the last page
- Board-approved calculators may be used

Question One	Marks
a) Find the remainder when $P(x) = x^3 - 4x + 2$ is divided by $x - 1$.	1
b) Find $\int xe^{x^2} dx$	1
c) Solve the inequality $\frac{2x-3}{x} \le 4$	3
 d) For the points A(3,-5) and B(-4,2), find the coordinates of the point P which divides the interval AB externally in the ratio 2:1. 	2
e) Solve the equation $x-1 = \sqrt{x+1}$.	3
f)	

2

Question Two (Start a new page)		
a) Find $\int \frac{1}{x \log_e x} dx$ using the substitution $u = \log_e x$.	2	
b) The cubic equation $x^3 - 4x^2 + x + 1 = 0$ has a root near $x = 0.7$ Use one application of Newton's Method to find a better approximation, giving your answer to 2 decimal places.	2	
c) For the function $f(x) = 2\sin^{-1}\left(\frac{x}{2}\right)$		
i) Find $f(2)$	1	
ii) State the domain and range of this function.	1	
iii) Neatly sketch $y = f(x)$.	2	
d) A parabola is defined by the parametric equations		
x=12t		
$y=6t^2+3$	######################################	
es la discover de la companya de la		

the equation of the tangent at Q.

Not to scale

Calculate the value of x, giving a reason for your answer.

Question Three (Start a new page)

Mai	k
Mai	K.

Question Four (Start a new page)

Marks

a) Evaluate $\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$

2

- b) Evaluate $\int_{-3}^{0} \frac{x}{\sqrt{x+4}} dx$ using the substitution $u^2 = x+4$, where u > 0.
- 3

c) Prove, by Mathematical Induction, that for $n \ge 1$

$$\frac{1}{1\times 4} + \frac{1}{4\times 7} + \frac{1}{7\times 10} + \dots + \frac{1}{(3n-2)\times (3n+1)} = \frac{n}{3n+1}$$

- 2
- Find the length of QX in terms of h.
- 1

2

2

2

i) Hence find the height of the tower.

a) A vertical tower with base X and height h metres stands on horizontal ground. From a point P on the ground due east of the tower the angle of elevation of the

top of the tower is 45° and from a point Q on the ground due south of the tower the angle of elevation of the top of the tower is 30° . If distance PO is 40 metres:

- b) Find $\int \frac{1}{4 + x^2} dx$
- c) A sphere is being heated so that its surface area is increasing at a constant rate of $15 \, mm^2/s$. Find the rate of increase of the volume of the sphere when the radius is $5 \, mm$. (You are given that $V = \frac{4}{3} \pi \, r^3$ and $S.A. = 4 \pi \, r^2$).
- Corn cobs are cooked by immersing them in boiling water. On being removed, a corn cob cools in the air according to the equation $\frac{dT}{dt} = -k(T-B)$, where t is time in minutes, T is temperature in degrees celsius (° C),

 B is the temperature of the surrounding air and k is a positive constant.
 - i) Show that $T = B + Ae^{-kt}$ is a solution of the above equation where A is a constant.
- ii) If the temperature of the boiling water is 100°C and the surrounding air is a constant 25°C, find the value of A and the value of k (correct to 4 decimal places) if a corn cob cools to 70°C in 3 minutes.
- iii) How long (to the mearest minute) will it take for the com to cool to 50°C?

d) CX is tangent to the circle centre O. Let $\angle CAB = \alpha$.

- i) Copy the diagram to your answer sheet.
- ii) Find with reasons \angle COB in terms of α
- iii) Find with reasons \angle OCB in terms of α .
- in the state of th
- iv) Hence show that $\angle BCX = \angle BAC$.

4

Question Five (Start a new page)

Marks

a) If $y = \sin^{-1}(3x - 2)$, find $\frac{dy}{dx}$.

2

- b) If p, q, and r are the roots of the cubic equation $x^3 + 2x^2 + 3x + 5 = 0$, find the value of:
 - i) p+q+r.

1

ii) $p^{-1} + q^{-1} + r^{-1}$.

3

c) $A(t, e^t)$ and $B(-t, e^{-t})$ are points on the curve $y = e^x$, where t > 0.

The tangents at A and B form an angle of 45° .

i) Prove that $e^t - \frac{1}{e^t} = 2$.

ii) Hence by solving the equation in part (i) find the coordinates of A in exact form.

3

Marks

- a) Consider the function $f(x) = \frac{x+1}{x^2+3}$
 - i) Find the points where the curve crosses the x-axis and the y-axis.

7

ii) Find the coordinates of any stationary points on the curve y = f(x) and, without finding the second derivative, determine their nature.

ġ.

iii) Describe the behaviour of y = f(x) for large positive and large negative values of x.

1

iv) Using an appropriate scale neatly sketch y = f(x) showing all important information.

2

b) The points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$.

[You are given that the equation of the chord PQ is 2y = (p+q)x - 2apq]

i) If the chord PQ passes through (2a, 0) show that pq = p + q.

1

ii) Hence, find the locus of M, the midpoint of PQ.

/i

a) An urn contains W white balls and B black balls. If the probability of selecting 2 white balls in succession at random is $\frac{1}{2}$ and

the probability of selecting 3 white balls in succession at random is $\frac{1}{2}$, find the number of white balls in the urn.

[You must justify your answer to gain full marks]

- A particle is travelling in a straight line executing Simple Harmonic Motion about O according to the equation $x = a \cos nt$.
 - Show that the velocity ν and the displacement x of the particle at any time t are related by the equation $v^2 = n^2 (a^2 - x^2)$.
 - ii) Hence using part (i) show that the acceleration of the particle can be written as $\ddot{x} = -n^2 x$.
- A rectangle ABCD with sides of length x metres and y metres has an area of $9m^2$. Two metal construction strips, one a diagonal BD and the other EF parallel to the sides AB and CD are required to strengthen the rectangle.

Show that the total length L of both strips is given by

$$L = x + \frac{\sqrt{x^4 + 81}}{x}$$
 metres.

Find the value of x that will minimise the total length L of the strips, writing your answer in the form $x = a^{b/c}$, where a, b and c are integers.

[You do not need to justify that your value of x gives a minimum L]

Marks

3

2

4

END OF EXAM

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a = 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad \dot{a} \neq 0$$

$$\int \frac{1}{\sqrt{2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_{e} x$, x > 0

Ext 1 2004 Trial

SOLUTIONS

Question One

- a) Using the remainder theorem find P(1) = -1.
- b) $\frac{1}{2}e^{x^2} + c$
- c) $x^2 \left(\frac{2x-3}{x}\right) \le 4x^2$ $x(2x-3) - 4x^2 \le 0$ $-x(2x+3) \le 0$
- $\therefore x \le -\frac{3}{2} \text{ and } x > 0 \text{ as } x \ne 0.$
- d) m: n=2:-1
- $\therefore x = \frac{2 \times -4 + -1 \times 3}{2 + (-1)} = -11, \ \ y = \frac{2 \times 2 + -1 \times 3}{2 + (-1)} = 9$
 - ∴ P has coordinates (-11,9)
- e) $(x-1)^2 = x+1$

$$x^2 - 2x + 1 = x + 1$$

$$x^2 - 3x = 0 \implies x(x - 3) = 0$$

 $\therefore \ddot{x} = 0 \text{ or } \dot{x} = 3$

but as x must ≥ 1 , then x = 3 only.

f) $8 \times (x+8) = 9 \times 16$ [Product of intersecting secants] 8x + 64 = 144 $\implies x = 10$.

Question Two

a) $u = \ln x \implies du = \frac{1}{x} dx$

$$I = \int \frac{1}{u} du = \ln(u)$$

 $= \ln(\ln x) + c$

b) Let $P(x) = x^3 - 4x^2 + x + 1$ $P'(x) = 3x^2 - 8x + 1$

Now with $x_1 = 0.7$, $x_2 = 0.7 - \frac{P(0.7)}{P'(0.7)} = 0.73 \text{ (2dp)}$

- c) i) 2
- ii) Domain: $-2 \le x \le 2$

Range: $-\pi \le y \le \pi$.

iii)

- d) i) $\frac{dx}{dt} = 12$ and $\frac{dy}{dt} = 12t$
 - ii) α) Q(-12,9).
 - β) $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ using the chain rule

$$=12t \times \frac{1}{12} = -1$$
 when $t = -1$.

- y 9 = -1(x + 12)
 - $\therefore y = -x 3.$

Question Three

- a) $\lim_{x \to 1} \frac{(x-1)(x^2+x+1)}{(x-1)(x+1)}$
- $= \lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} = \frac{1 + 1 + 1}{1 + 1} = \frac{3}{2}$
- b) $u^2 = x + 4 \implies 2u \, du = dx$ and $u = \sqrt{x + 4}$

Also, when x = -3, u = 1 and when x = 0, u = 2

$$I = \int_{1}^{2} \frac{u^{2} - 4}{u} \times 2u \ du$$

$$= 2 \int_{1}^{2} u^{2} - 4 \ du$$

$$= 2 \left[\left(\frac{u^{3}}{3} - 4u \right) \right]_{1}^{2}$$

$$= 2 \left[\left(\frac{8}{3} - 8 \right) - \left(\frac{1}{3} - 4 \right) \right] = -\frac{10}{3}$$

c) When n = 1, LHS = $\frac{1}{4}$, RHS = $\frac{1}{3 \times 1 + 1} = \frac{1}{4}$

Assume true for n = k, i.e.

$$\frac{1}{1 \times 4} \frac{1}{4 \times 7} \frac{1}{7 \times 10} + \frac{1}{(3k-2) \times (3k+1)} \frac{k}{3k+1}$$

Now prove true for n = k + 1, i.e. prove that $S_k + T_{k+1} = S_{k+1}$.

$$S_k = \frac{k}{3k+1}, \ S_{k+1} = \frac{k+1}{3k+4}, \ T_{k+1} = \frac{1}{(3k+1)(3k+4)}$$

$$S_k + T_{k+1} = \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)}$$

$$= \frac{k(3k+4)+1}{(3k+1)(3k+4)}$$

$$= \frac{3k^2 + 4k + 1}{(3k+1)(3k+4)}$$

$$= \frac{(3k+1)(k+1)}{(3k+1)(3k+4)} = \frac{k+1}{3k+4}$$

 $=S_{k+1}$

. If true for n = k then true for n = k + 1 and since true for n = 1, then true for n = 2 and so on for all integers n.

1)

- i) $\angle COB = 2\alpha$ (\angle at centre = twice \angle at circumference)
- ii) $\angle OCB = 90 \alpha$ (base \angle 's of isos $\triangle =$ and \angle sum of \triangle)
- iii) $\angle BCX = \angle OCX \angle OCB$ = $90 - (90 - \alpha)$ (rt. \angle , tangent \perp to radius) = α = $\angle BAC$.

Question Four

- a) i) $\tan 30^\circ = \frac{h}{QX} \implies QX = \sqrt{3}h$.
- ii) Similarly $\tan 45^\circ = \frac{h}{PX} \implies PX = h$

 $\therefore \text{ Using } \Delta PXQ: 40^2 = \left(\sqrt{3}h\right)^2 + h^2$

 $1600 = 4h^2 \implies h = 20m$

b) $\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + c$

Ouestion Four (cont)

c)
$$\frac{dA}{dt} = 15$$
, $\frac{dA}{dr} = 8\pi \ r$, $\frac{dV}{dr} = 4\pi \ r^2$, $\frac{dV}{dt} = ?$

Need to use the chain rule twice:

$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} \implies 15 = 8\pi \ r \times \frac{dr}{dt} \implies \frac{dr}{dt} = \frac{15}{8\pi r}$$
 b) i) $p + q + r = -\frac{b}{a} = -2$

Also
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt} = 4\pi r^2 \times \frac{15}{8\pi r}$$

$$\therefore \frac{dV}{dt} = \frac{15r}{2} \implies 37.5mm^3/s \text{ when } r = 5.$$

d) i)
$$LHS = \frac{dT}{dt} = -kAe^{-kt}$$

$$RHS \doteq -k(T-B) = -k(B+Ae^{-kt}-B)$$
$$= -kAe^{-kt} = LHS$$

ii) When $t = 0, T = 100^{\circ}$ and when $t = 3, T = 70^{\circ}$.

Now
$$T = 25 + Ae^{-kt}$$

$$\therefore 100 = 25 + Ae^0 \implies A = 75.$$

Also
$$70 = 25 + 75e^{-3k}$$

$$e^{-3k} = \frac{45}{75} \implies k \approx 0.1703$$

iii)
$$50 = 25 + 75e^{-0.1703t} \implies \frac{1}{3} = e^{-0.1703t}$$

$$\therefore -0.1703t = \ln\left(\frac{1}{3}\right) \implies t \approx 6 \text{ minutes.}$$

Ouestion Five

a)
$$\frac{dy}{dx} = \frac{3}{\sqrt{1 - (3x - 2)^2}}$$

b) i)
$$p+q+r = -\frac{b}{a} = -2$$

ii)
$$pq + pr + qr = \frac{c}{a} = 3$$
 and $pqr = -\frac{d}{a} = -5$

$$\therefore p^{-1} + q^{-1} + r^{-1} = \frac{1}{p} + \frac{1}{q} + \frac{1}{r}$$
$$= \frac{pq + pr + qr}{pqr} = -\frac{3}{5}.$$

c)
$$y = e^x \implies \frac{dy}{dx} = e^x$$

$$\therefore$$
 at $A: x=t \implies m_1=e^t$
and at $B: x=-t \implies m_2=e^{-t}$

$$\therefore \tan 45^\circ = \left| \frac{e^t - e^{-t}}{1 + e^t \times e^{-t}} \right|$$

$$\therefore 1 = \frac{e^t - e^{-t}}{1 + e^0} \implies 2 = e^t - e^{-t}$$

Hence
$$2 = e^t - \frac{1}{e^t}$$

ii)
$$(e^t)^2 - 2e^t - 1 = 0$$
 using ***

$$\therefore e^t = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times -1}}{2 \times 1}$$

$$= \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}$$

but as $e^t > 0$, then $e^t = 1 + \sqrt{2} \implies t = \ln(1 + \sqrt{2})$

$$\therefore$$
 A has coordinates $\left[\ln\left(1+\sqrt{2}\right),\left(1+\sqrt{2}\right)\right]$

Ouestion Six

a) i) At
$$x = 0 \implies y = \frac{1}{3}$$
 : $y - \text{intercept is } \left(0, \frac{1}{3}\right)$

At
$$y = 0 \implies x = -1$$
 : x -intercept is $(-1,0)$.

ii)
$$\frac{dy}{dx} = \frac{(x^2 + 3) \times 1 - (x + 1) \times 2x}{(x^2 + 3)^2} = \frac{3 - 2x - x^2}{(x^2 + 3)^2}$$

For stationary points $\frac{dy}{dx} = 0$

$$\therefore x^2 + 2x - 3 = 0 \Rightarrow (x+3)(x-1) = 0$$

\therefore x = -3 or x = 1

When
$$x = -3$$
, $y = -\frac{1}{6}$ and $\begin{vmatrix} x & -3^- & -3^+ \\ y' & -ve & 0 & +ve \end{vmatrix}$

 $\therefore \left(-3, -\frac{1}{6}\right)$ is a minimum.

When
$$x = 1$$
, $y = \frac{1}{2}$ and

	x	1-	1	1+
i	y'	+ve	0	-ve

 $\therefore \left(1,\frac{1}{2}\right)$ is a maximum.

iii) As $x \to \infty$, $f(x) \to 0$ from above.

and as $x \to -\infty$, $f(x) \to 0$ from below.

6b) i) Substitute the point (2a,0) into the equation

$$2y = (p+q)x - 2apq \text{ to obtain}$$

$$0 = (p+q) \times 2a - 2apq$$

$$\therefore 0 = 2ap + 2aq - 2apq$$

$$0 = p + q - pq \quad \Longrightarrow \quad pq = p + q$$

ii) The midpoint M of the chord PO has

coordinates
$$M\left(a(p+q), a\left(\frac{p^2+q^2}{2}\right)\right)$$

$$x^{2} = a^{2}(p+q)^{2}$$

$$= a^{2}(p^{2} + a^{2}) + 2a^{2}pq$$

$$= 2a \times a \left(\frac{p^2 + q^2}{2}\right) + 2a^2 pq$$

$$= 2ay + 2a \times a(p+q) - \text{using (i)}$$

Hence the locus of M is given by the equation

$$x^2 = 2a(y + x)$$

= 2av + 2ax

Ouestion Seven

a)
$$\frac{W}{W+B} \times \frac{W-1}{(W-1)+B} = \frac{1}{3}$$
 ----(1)

$$\frac{W}{W+B} \times \frac{W-1}{(W-1)+B} \times \frac{W-2}{(W-2)+B} = \frac{1}{6}$$

$$\therefore \frac{1}{3} \times \frac{W-2}{(W-2)+B} = \frac{1}{6} \quad \Rightarrow \quad \frac{W-2}{(W-2)+B} = \frac{1}{2}$$

$$\therefore 2W - 4 = W - 2 + B \qquad \Rightarrow \qquad B = W - 2 \quad --(2)$$

Substitute (2) into (1) to obtain

$$\frac{W}{2W-2} \times \frac{W-1}{2W-3} = \frac{1}{3}$$

$$\frac{W^2 - W}{4W^2 - 10W + 6} = \frac{1}{3}$$

$$3W^2 - 3W = 4W^2 - 10W + 6$$

$$W^2 - 7W + 6 = 0$$

$$(W-1)(W-6)=0$$

$$\therefore W = 1 \text{ or } W = 6$$

But W = 1 is trivial hence there are six white balls.

b) i)
$$x = a \cos nt$$

$$v = -an \sin nt$$

$$= a^{2}n^{2} \left(1 - \cos^{2} nt\right)$$

$$= a^{2}n^{2} \left(1 - \cos^{2} nt\right)$$

$$= a^{2}n^{2} - n^{2}(a\cos nt)^{2}$$

$$= a^{2}n^{2} - n^{2}x^{2}$$

$$= n^{2}(a^{2} - x^{2})$$

ii)
$$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$$
$$= \frac{1}{2} n^2 \frac{d}{dx} \left[\left(a^2 - x^2 \right) \right]$$
$$= \frac{1}{2} n^2 \times -2x$$
$$= -n^2 x$$

c) i)
$$xy = 9 \implies y = \frac{9}{x}$$
 (1)

Also
$$L = DC + DB = x + \sqrt{x^2 + y^2}$$

$$\therefore L = x + \sqrt{x^2 + \left(\frac{9}{x}\right)^2}$$
 using (1)

$$= x + \sqrt{x^2 + \frac{81}{x^2}} = x + \sqrt{\frac{x^4 + 81}{x^2}}$$

$$\therefore L = x + \frac{\sqrt{x^4 + 81}}{x}$$

ii)
$$\frac{dL}{dx} = 1 + \frac{x \times \frac{1}{2} (x^4 + 81)^{-\frac{1}{2}} \times 4x^3 - \sqrt{x^4 + 81} \times 1}{x^2}$$

$$=1+\frac{\frac{2x^4}{\sqrt{x^4+81}}-\sqrt{x^4+81}}{x^2}$$

$$=1+\frac{\frac{2x^4-(x^4+81)}{\sqrt{x^4+81}}}{x^2}$$

$$=1+\frac{x^4-81}{x^2\sqrt{x^4+81}}$$

For a minimum
$$\frac{dI}{dx} = U \implies 1 = \frac{81 - x^4}{x^2 \sqrt{x^4 + 81}}$$

$$\therefore x^2 \sqrt{x^4 + 81} = 81 - x^4$$
 and square both sides

$$x^{4}(x^{4} + 81) = 6561 - 162x^{4} + x^{8}$$
$$x^{8} + 81x^{4} = 6561 - 162x^{4} + x^{8}$$
$$6561 = 243x^{4}$$

$$x^4 = 27$$

Hence
$$x = 27^{\frac{1}{4}}$$
 or $x = 3^{\frac{3}{4}}$

Marin Marin (Marin Herri) Committee